
Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

Application of Travelling Salesman Problem for

Planning Ice Cream Material Distribution Routes to

Mixue Branches in Bandung City

Benardo - 135220551

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
113522055@std.stei.itb.ac.id

Abstract—Mixue is a well-known Chinese brand, famous for its

drinks and ice cream. It began as a small, shaved ice shop in

Zhengzhou, Henan, and has since expanded significantly, now

boasting 60 stores in Bandung. Mixue ensures fresh and high-

quality products by centrally supplying ingredients to each store.

To minimize delivery costs, it is crucial for the company to find

the shortest and most efficient delivery routes. This paper

explores methods to optimize ingredient delivery to the Bandung

stores. The objective is to reduce expenses by identifying the

quickest and most straightforward delivery paths. The study

employs a strategy known as the Traveling Salesman Problem

(TSP), which is solved using dynamic programming. This

approach is used to determine the most effective delivery routes.

Such meticulous planning is essential to ensure that all Mixue

stores receive their supplies promptly and cost-effectively.

Keywords—Graf, Mixue, Most Effective Delivery Routes,

Travelling Salesman Problem

I. INTRODUCTION

Mixue, one of the world's largest ice cream franchise

companies, first established its roots in Zhengzhou, Henan,

China on June 16, 1997. Founded by the Zhang brothers,

Mixue initially focused on selling ice cream. However, the

soaring popularity of their ice cream led to the decision to start

a franchise business. Today, Mixue boasts a remarkable

presence with 21,581 outlets operating across China and 12

other countries in the Asia-Pacific region.

In Indonesia, Mixue made its debut in 2020, opening its first

store in Cihampelas Walk, Bandung. Since then, the company

has expanded rapidly, now operating over a thousand outlets

throughout Indonesia. Bandung alone is home to around 60

Mixue branches. To support this growth, Mixue has developed

a central warehousing and logistics hub, aiming to minimize

production chain costs. The company's primary focus has

shifted from just selling ice cream to supplying raw materials,

packaging, and processing machines to its franchises,

essentially functioning as a supply chain company.

Ensuring the daily delivery of raw materials from the

warehouse to various Mixue branches is a critical operation.

With numerous branches in Bandung, distribution is organized

among several trucks, each covering different delivery

locations. The selection of delivery routes plays a vital role in

this process, as choosing the shortest and most efficient routes

minimizes distance, time, and fuel consumption.

In this paper, we will explore how Mixue can maximize its

profits by minimizing distribution costs. This will involve

optimizing delivery routes to determine the shortest possible

paths for the trucks. We will model the distances between the

warehouse and each Mixue branch as nodes in a weighted

graph, connected by edges. The paper will focus on applying

the Travelling Salesman Problem approach to optimize these

delivery routes.

II. BASIC THEORY

A. Graph Definition

 A graph is defined as a discrete structure consisting of a

collection of vertices (nodes) connected through a set of edges.

Vertices represent individual points or elements within the

graph, and they may or may not be connected to each other. In

graphical representation, vertices are often denoted by dots or

circles. On the other hand, edges are the connections or links

between two vertices and are represented as lines connecting

the corresponding dots or circles. There are also edges that

start and end at the same vertex, known as loops. Graph is

represented in the form 𝐺 = (𝑉, 𝐸), where G represents the

graph, V is a non-empty set of vertices such as 𝑣1, 𝑣2, …, 𝑣𝑛,

and E is a set of edges like 𝑒1, 𝑒2, …, 𝑒𝑛, which connect pairs

of vertices within the graph.

B. Types of Graphs

 Based on the presence and presence and absence of multiple

and loop edges connecting the same vertices, the graph has two

types:

1. Simple graphs

A simple graph is characterized by having precisely

one edge connecting any pair of vertices, and it does

not include multiple edges between the same pair of

vertices or self-connections (loops).

Fig. 1. Simple Graphs Example (Source:[1])

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

2. Unsimple graphs

An unsimple graph refers to a type of graph in

which loops, which are edges that connect a

vertex to itself, or multiple edges connecting the

same pair of vertices are present. Unsimple

graphs can be categorized into two subcategories:

a. Multi-graph

A multigraph is a type of graph characterized

by the presence of multiple edges that

connect the same pair of vertices. In other

words, a multigraph can have multiple edges

associated with the same unordered pair of

vertices {𝑢, 𝑣}, and the number of these

edges is known as the multiplicity of the

edge {𝑢, 𝑣}.

b. Pseudo-graph

A pseudograph is a type of graph that can

include loops, which are edges connecting a

vertex to itself, and it may also have multiple

edges connecting the same pair of vertices or

a vertex to itself.

Fig. 2. Unsimple Graphs Example (Source : [1])

Based on the direction of the edges, graphs can be divided

into two types:

1. Undirected graph

Undirected graph is a graph that does not have any

direction on its edges

Fig. 3. Undirected Graphs Example (Source: [1])

2. Directed graph

A directed graph is a collection of vertices connected by

edges, where the edges have a specific directionality,

indicating the path from one vertex to another. In a

directed graph, each edge is characterized as an ordered

pair of vertices. This means that each edge has a

direction indicated by its starting and ending points. For

example, an edge represented by the ordered pair {𝑢, 𝑣}

is understood to be an edge that starts at vertex 𝑢 and

ends at vertex 𝑣.

Fig. 4. Directed Graphs Example (Soruce: [2])

C. Figures and Tables

 In graph theory, there is some terminologies that is used

when analyzing graphs:

1. Adjacent

In the realm of graph theory, adjacency in an

undirected graph implies that two vertices are

connected by an edge. Conversely, in a directed

graph, adjacency is specifically defined: the vertex

from where an edge originates is adjacent to the

vertex where the edge terminates. For an edge (𝑢, 𝑣)

in a graph 𝐺, vertex 𝑢 is known as the starting or

initial vertex, while vertex 𝑣 is referred to as the

terminal or end vertex. Notably, in cases where an

edge loops back to its origin, the initial and terminal

vertices are identical.

2. Incidence

In the context of edges and vertices, an edge (𝑢, 𝑣)

that links vertices 𝑢 and 𝑣 is said to be incident with

these vertices. This term describes the relationship

between vertices and the edges that connect them.

3. Degree

In undirected graphs, the degree of a vertex is the total

count of edges incident to it. When a vertex contains a

loop, this loop is counted twice towards the vertex's

degree. The degree is denoted as 𝑑𝑒𝑔(𝑣). A vertex is

termed isolated if no edges are incident to it.

Furthermore, a graph comprised entirely of isolated

vertices is classified as a null or empty graph.

4. Path

A path within a graph is essentially a series of edges

connecting a sequence of vertices, starting from one

vertex and proceeding through others along the edges.

A key concept here is that two vertices are deemed

connected if a path exists between them. A graph is

considered connected if there is a path linking every

pair of vertices. In directed graphs, strong

connectivity is the presence of directed paths both

from 𝑢 to 𝑣 and from 𝑣 to 𝑢 for any pair of vertices 𝑢,

𝑣. Weak connectivity, in contrast, is a state where a

directed graph becomes connected only after

transforming all its directed edges to undirected ones.

5. Cycle or Circuit

A cycle is defined as a sequence of vertices and edges

that forms a closed loop, beginning and ending at the

same vertex. This means a cycle is a path without a

distinct start or end point but rather a continuous loop.

The length of a cycle is determined by the number of

edges it encompasses. It is possible for a graph to

contain various cycles, each differing in length.

6. Subgraph

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

A subgraph is essentially a smaller portion of a graph,

comprising a selection of vertices and edges from a

larger graph. This smaller graph retains the properties

and connections of the original, larger graph,

effectively forming a graph within a graph.

7. Weighted graph

In weighted graphs, a numerical value, or weight, is

assigned to each edge. These weights may represent

different quantities or values, such as distances, costs,

or capacities. This concept of weighted graphs is

applicable to both directed and undirected graphs,

adding an extra layer of information to the graph's

structure.

8. Completed graph

A complete graph is a type of graph in which every

vertex is connected to every other vertex by an edge.

In this graph, there is a direct link between each pair

of vertices, ensuring that no vertex is isolated. This

means that if the graph has n vertices, there will be an

edge connecting every possible pair of vertices,

resulting in a highly interconnected structure. The

defining characteristic of a complete graph is this

thorough and comprehensive connectivity among all

its vertices.

Fig. 5. Completed graph (Source: [1])

D. Graph Representation

 There is some way to represent graph:

1. Adjacency matrix

An adjacency matrix is a representation of an undirected

graph with n vertices (nodes) using a square matrix M of

size n x n. Each element in the matrix, denoted as

M[i][j], represent the connection between i and j vertex.

If M[i][j] is set to 1, it means there is an edge connecting

vertex I to vertex j, but if it sets to 0, it means there is no

edge connecting i and j vertex. For directed graph , if it

sets to 1 , it means there is an edge from i vertex to j

vertex , and 0 if no. For weighted graph, M[i][j]

represents the edge weight from vertex i to vertex j.

Fig. 6. Adjacency Matrix (Source: [2])

2. Incidence matrix

The incidence matrix A of an undirected graph has a

row for each vertex and a column for each edge of the

graph. The element A[i][j] of A is 1 if the i vertex is a

vertex of the jth edge and 0 otherwise.

Fig. 7. Incidence Matrix (Source: [2])

E. Hamilton Trail and Circuit

 A Hamiltonian path is a route in a graph that visits every

vertex at least once. Conversely, a Hamiltonian circuit is a

Hamiltonian path that returns to its starting point, meaning all

vertices are visited with the starting vertex being visited twice.

Graphs with only Hamiltonian paths are known as semi-

Hamiltonian, while those with Hamiltonian circuits are termed

Hamiltonian graphs. For a simple undirected graph to be

Hamiltonian, a common condition is that each of its n vertices

(for 𝑛 ≥ 3) should have a degree of at least
𝑛

2
. However, a graph

may still contain a Hamiltonian circuit even if it doesn't meet

this criterion.

Fig. 8. Hamilton Graf (Source: [2])

F. Travelling Salesman Problem

The Traveling Salesman Problem (TSP) is an optimization

challenge well recognized in computer science and operations

research. It involves finding the shortest possible route that a

salesman can take to visit each city in a given set exactly once

and return to the starting city. This requires determining a

Hamiltonian circuit in a complete graph where the total weight

of all the edges is minimized.

In a typical TSP scenario, a number of cities are given, along

with the distances between them. For example, in a graph

representation, each city is a node, and the paths between cities

are edges with weights representing the distances. The goal is

to find the shortest path that covers all cities and returns to the

origin, optimizing travel time and costs.

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

Fig. 9. Weighted graph for TSP example (Source: [2])

There are several approaches to solving the TSP. A brute-

force method calculates the weight of every Hamiltonian

circuit and chooses the one with the minimum weight. For

instance, a graph with five nodes has
(5−1)!

2
 = 12 Hamiltonian

circuits. This brute-force approach, however, becomes

inefficient for many cities due to its time complexity of O(n!),

where n is the number of nodes in the complete graph. For n

that larger than 5, this approach not efficient. Therefore, in this

paper using dynamic programming, because it offers a more

efficient solution, especially for larger values of n, by reducing

the time complexity from exponential to polynomial. It does

this by storing solutions to subproblems and avoiding

redundant calculations. Besides that, there is other approaches

to solving TSP like nearest neighbor, branch and bound, and

genetic algorithms.

G. Dynamic Programming TSP Algorithms

Dynamic programming is a method for solving a complex

problem by breaking down the given problem into several sub

problems and solving these sub problems once and storing the

solution to these sub problems in a table. Generally, dynamic

programming is applied to optimization problems. Dynamic

programming is applied when there is an overlapping between

sub problems of the same problem. In many computational

problems, the brute-force approach, which evaluates all

possible configurations to find a solution, can be extremely

inefficient, especially with a growing number of elements.

Dynamic programming addresses this inefficiency by storing

the solutions to subproblems, thus avoiding redundant

calculations. If applicable to some problem, it takes less time

than naive methods. It can be used to solve problem in time

polynomial time for which a naive approach would take

exponential time.

The Traveling Salesman Problem (TSP) is a classic example

where dynamic programming is particularly advantageous. In

TSP, the goal is to find the shortest possible route that visits

each city exactly once and returns to the starting point. This

problem presents a significant number of overlapping sub-

routes, especially as the number of cities increases. The brute-

force method of evaluating every possible permutation of cities

becomes impractical due to its factorial time complexity. For

example, route A - B - C - D -A has the same sub-route with A

- C - B - D - A. Instead of calculating the distance for every

possible route, dynamic programming would solve smaller

sub-routes and store these solutions. Dynamic programming,

however, efficiently tackles this by solving each sub-route

once and reusing the solution in the context of larger routes.

In this paper, we address the Traveling Salesman Problem

(TSP) using the Held-Karp algorithm, a dynamic programming

approach renowned for reducing the computational complexity

from factorial to polynomial time, making it suitable for

moderately sized TSP instances. The algorithm is implemented

through the function held_karp_tsp(matrix), where matrix is a

weighted adjacency matrix indicating distances between cities.

It begins by initializing a dictionary C that stores the minimum

cost of reaching each subset of cities, ending at a specific city.

Utilizing binary representation for efficient management of

city subsets, the algorithm determines the minimum cost path

for each city within these subsets. Crucially, by storing and

reusing results for each subset in C, the algorithm adheres to

the dynamic programming principle of solving each

subproblem only once, thereby avoiding redundant calculations

and optimizing the route-finding process in TSP.

Here is the pseudocode for dynamic programming using

bellman-Held-Karp algorithm:

Fig. 10. Pseudocode for solving TSP using Held-Karp

algorithm (Source: [4])

III. METHODOLOGY

A. Limitations

In this paper, there is certain limitations encountered while

applying the Traveling Salesman Problem (TSP) to determine

the most efficient route for distributing ice cream materials to

Mixue branches in Bandung. These limitations are outlined as

follows.

1. The assumption that the shortest route is always the

optimum route. This assumption overlooks other critical

factors that impact the efficiency of the route, such as

traffic conditions, road infrastructure, and the time

required for delivery.

2. The analysis and solutions provided are applied to only

20 Mixue branches in Bandung, under the assumption

that these branches are serviced by a single delivery

truck.

3. The distances considered for each route are based on the

minimum possible routes.

B. Data Used

The data on Mixue branches in Bandung was obtained using

the Google Maps API, a method that allowed for a thorough

and precise compilation of information. This approach led to

the identification of over 60 Mixue branches throughout

Bandung. The dataset includes essential details such as the

names and addresses of these branches, with each address

providing the city and postal code.

Fig. 11. Snapshot of Mixue Branches Data in Bandung

(Source: Google Maps API)

The starting point for all delivery is from Mixue warehouse

that located on Jalan Raya Terusan Kopo no.611.

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

C. Problem Modeling

Step 1

Select n Mixue Branches in Bandung that delivered by one

truck.

Below is the data of the chosen Mixue branches for one

delivery shift:

Mixue

Branches

Address

Mixue

Tubagus

Ismail

Jl. Tubagus Ismail No.27B, Sekeloa,

Kecamatan Coblong, Kota Bandung, Jawa

Barat 40134, Indonesia

Mixue

Dipatiukur

Jl. Dipati Ukur No.72F, Lebakgede,

Kecamatan Coblong, Kota Bandung, Jawa

Barat 40132, Indonesia

Mixue Dago

Pusat

Jl. Ir. H. Juanda No.314A, RT.1/RW.1,

Dago, Kecamatan Coblong, Kota

Bandung, Jawa Barat 40135, Indonesia

Mixue

Cihampelas

Jl. Cihampelas No.160, Cipaganti,

Kecamatan Coblong, Kota Bandung, Jawa

Barat 40131, Indonesia

Mixue

Ciumbuleuit

Jl. Ciumbuleuit No.91, Hegarmanah, Kec.

Cidadap, Kota Bandung, Jawa Barat

40141, Indonesia

Mixue

Sukamaju

Jl. Sukamaju No.6, Pasteur, Kec.

Sukajadi, Kota Bandung, Jawa Barat

40161, Indonesia

Mixue

Cigadung

Jl. Cikondang No.15, Sadang Serang,

Kecamatan Coblong, Kota Bandung, Jawa

Barat 40133, Indonesia

Mixue Banda Jl. Banda No.32, Citarum, Kec. Bandung

Wetan, Kota Bandung, Jawa Barat 40115,

Indonesia

Mixue

Pahlawan

Jl. Pahlawan No.41, Cihaur Geulis, Kec.

Cibeunying Kaler, Kota Bandung, Jawa

Barat 40122, Indonesia

Mixue

Sumanti

Jl. Surya Sumantri No.72b, Sukagalih,

Kec. Sukajadi, Kota Bandung, Jawa Barat

40164, Indonesia

Mixue

Cihapit

Jl. Cihapit No.25A, Cihapit, Kec.

Bandung Wetan, Kota Bandung, Jawa

Barat 40114, Indonesia

Mixue

SetiaBudi

Jl. Dr. Setiabudi No.170d, Hegarmanah,

Kec. Cidadap, Kota Bandung, Jawa Barat

40141, Indonesia

Mixue paskal

sukajadi

Jl. Pasir Kaliki No.215, Sukabungah, Kec.

Sukajadi, Kota Bandung, Jawa Barat

40162, Indonesia

Mixue

Cikutra

Jl. Cikutra No.150, Cikutra, Kec.

Cibeunying Kidul, Kota Bandung, Jawa

Barat 40124, Indonesia

Mixue Dago

Atas

Jl. Ir. H. Juanda, Dago, Kecamatan

Coblong, Kota Bandung, Jawa Barat

40135

Mixue BEC Istana BEC LU S01/02, Babakan Ciamis,

Kec. Sumur Bandung, Kota Bandung,

Jawa Barat 40117, Indonesia

Mixue Jl. Kebon Kawung No.30, Pasir Kaliki,

Kawung Kec. Cicendo, Kota Bandung, Jawa Barat

40171, Indonesia

Mixue

Padjajaran

Jl. Pajajaran No.122B, Pajajaran, Kec.

Cicendo, Kota Bandung, Jawa Barat

40172, Indonesia

Mixue

Cibadak

Jl. Cibadak No.125, Karanganyar, Kec.

Astanaanyar, Kota Bandung, Jawa Barat

40241, Indonesia

Table 1. Selected Mixue Branches

Step 2

From the data on the locations of Mixue branches requiring

delivery, the distance between each branch and all other

branches is determined. The distance between each branch and

the Mixue warehouse is also calculated. This distance

calculation is performed using the Google Maps Distance

Matrix API, ensuring that the obtained data represents the

shortest route passable by a truck.

The gathered data is then modeled as a weighted graph, with

each location serving as a node, and each edge bearing a

weight corresponding to the distance between locations. Below

is the modeling of the problem as a weighted graph (weights

are not shown due to overlap):

Fig. 12. Data modeling as weighted graph (Source: Primary)

 The graph in Figure 12 is a directed and weighted graph. It

is concerned that the distance from node-I to node-j is different

from node-j to node-i. Below is the mapping of nodes in the

graph to Mixue Branches:

Vertices
Mixue

Brranches
Vertices

Mixue

Branches

0
Mixue

Warehouse
10

Mixue

Sumatri

1
Mixue Tubagus

Ismail
11 Mixue Cihapit

2
Mixue

Dipatiukur
12

Mixue

Setiabudi

3
Mixue Dago

Pusat
13

Mixue Paskal

Sukajadi

4
Mixue

Cihampelas
14 Mixue Cikutra

5
Mixue

Ciumbuleuit
15 Mixue BEC

6 Mixue 16 Mixue Dago

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

Sukamaju Atas

7
Mixue

Cigadung
17

Mixue

Kawung

8 Mixue Banda 18
Mixue

Padjajaran

9
Mixue

Pahlawan
19

Mixue

Cibadak

Table 2. Vertices representation to Mixue Branches

 The Adjacency matrix that represents the graph, which each

cell represents the distance (in meter):

From/To 0 1 2 3 4

0 ∞ 31278 29741 31041 28908

1 29535 ∞ 1310 1324 3561

2 28704 1065 ∞ 1599 3459

3 29611 1054 1387 ∞ 3638

4 27146 4418 2981 4181 ∞

5 29224 3342 2742 3105 2657

6 37194 12248 13231 14410 16063

7 30944 1977 3287 3180 5538

8 28866 4239 2824 4003 5655

9 29848 3100 3924 5103 6755

10 24917 7567 8142 7330 6566

11 29461 4155 3547 4725 6378

12 27432 4839 4239 4603 3838

13 27622 5504 4903 5267 2151

14 30864 3956 4940 6118 7771

15 27830 4673 3257 4436 4626

16 31783 3225 3558 2171 5809

17 20405 5986 4571 5750 3415

18 20314 6576 5160 6339 3967

19 18723 6952 5536 6715 4794

From/To 5 6 7 8 9

0 31707 29159 31249 23949 30979

1 3039 12246 1977 3613 3100

2 2936 12540 2759 2782 3226

3 3115 13300 3031 3690 4154

4 4847 13710 4666 2979 4396

5 ∞ 15812 5319 5045 6498

6 15540 ∞ 10499 12859 9563

7 5016 10498 ∞ 4158 1351

8 5133 12263 3375 ∞ 2713

9 6233 9569 1351 2938 ∞

10 6336 18693 9650 8216 9380

11 5855 11566 3444 970 2346

12 3609 16947 6817 6216 7633

13 4273 14600 5557 3869 5286

14 7248 8505 2208 3904 1271

15 5566 13348 4776 1819 4505

16 5286 14155 3658 5861 5009

17 5537 14587 5544 3133 5273

18 6090 15177 6133 3723 5863

19 6916 16186 6922 3936 6652

From/To 10 11 12 13 14

0 24674 15765 29457 26758 32002

1 6246 4464 5707 4193 3956

2 5415 3626 5605 3362 4250

3 6323 4541 5784 4270 5010

4 3857 3890 4355 1791 5420

5 5935 5993 4803 3869 7522

6 15867 12203 17347 13814 8488

7 7655 3503 7684 5603 2208

8 5578 1036 7058 3525 3736

9 6560 2282 8040 4507 1279

10 ∞ 9780 4784 5158 10403

11 6172 ∞ 7652 4119 3321

12 4169 7127 ∞ 4614 8657

13 4333 4780 3533 ∞ 6310

14 7576 3249 9056 5523 ∞

15 4542 2114 6008 2475 5529

16 8494 6712 7955 6441 5865

17 3307 4045 4798 1253 6297

18 3860 4634 5350 1805 6887

19 4686 4090 6176 2632 7676

From/To 15 16 17 18 19

0 23125 33014 13570 20226 12665

1 3749 3668 5483 6453 6079

2 2918 3572 4652 5622 5248

3 3826 2651 5560 6529 6156

4 2155 6154 3873 4069 5040

5 4257 5078 5976 6189 7143

6 14160 14157 16423 16074 15264

7 5948 3658 7666 7862 7486

8 2303 5975 4309 5784 3668

9 4852 5009 6571 6766 6136

10 7102 9303 6495 7569 8612

11 3594 6698 5050 6379 3930

12 5392 6576 7110 6934 8277

13 3045 7240 4763 4587 5930

14 5868 5865 7587 7782 7102

15 ∞ 6409 2452 3954 3264

16 5997 ∞ 7731 8701 8327

17 2309 7722 ∞ 2225 3265

18 2899 8312 2551 ∞ 3855

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

19 3274 8688 1422 3604 ∞

Table 3. Graph representation with weighted adjacency

matrix.

D. The implementation of Dynamic Programming for

the Traveling Salesman Problem (TSP) in Python

In this paper, the author applies an implementation of the

Traveling Salesman Problem (TSP) solution algorithm through

a dynamic programming approach, employing the Held-Karp

algorithm in Python. This implementation can be seen in the

function held_karp_tsp(matrix). However, the implementation

has been modified so that it not only returns the shortest

distance but also the nodes it passes through.

Firstly, the author performs the initialization of the data

variable distance_matrix to hold the weighted adjacency matrix

as can be seen in Table 3.

Fig. 13. Store Matrix to variable (Source: Primary)

Then, the function held_karp_tsp(matrix) is called, where

matrix is the weighted adjacency matrix, to obtain the shortest

route and the total shortest distance.

Fig. 14. held_karp_tsp(matrix) function. (Source: Primary)

Inside the function, the function initially stores the distances

from node 0 to other nodes, indicating that node 0 is designated

as the starting point.

Fig. 15. Set vertices 0 as starting point (Source: Primary)

Then, the function searches for the shortest total distance

Hamiltonian circuit by using the subset distance values that

have been recorded in the dictionary C.

Fig. 16. Code to set shortest route. (Source: Primary)

Subsequently, the results returned by the function are stored

in the variables shortest route and total distance, and then

output to the terminal.

Fig. 17. Output result. (Source: Primary)

IV. ANALYSIS AND DISCUSSION

A. Analysis of the Most Optimal Route: Results of the

Program Execution for Solving TSP with Dynamic

Programming

The result of the program execution implementing

Travelling Salesman Problem (TSP) with dynamic

programming to find the most optimum route for material

distribution to Mixue Branches in Bandung:

Fig. 18. The Result of program execution. (Source: Primary)

The most optimum route for delivering material to 20 Mixue

Branches is:

1. Node 0 – Mixue Warehouse

2. Node 17 – Mixue Kawung

3. Node 18 – Mixue Padjajaran

4. Node 13 – Mixue Paskal Sukajadi

5. Node 4 – Mixue Cihampelas

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

6. Node 10 – Mixue Sumatri

7. Node 12 – Mixue Setiabudi

8. Node 5 – Mixue Ciumbuleuit

9. Node 2 – Mixue Dipatiukur

10. Node 1 – Mixue Tubagus Ismail

11. Node 3 – Mixue Dago Pusat

12. Node 16 – Mixue Dago Atas

13. Node 7 – Mixue Cigadung

14. Node 6 – Mixue Sukamaju

15. Node 14 – Mixue Cikutra

16. Node 9 – Mixue Pahlawan

17. Node 11 – Mixue Cihapit

18. Node 8 – Mixue Banda

19. Node 15 – Mixue BEC

20. Node 19 – Mixue Cibadak

21. Node 0 – Mixue Warehouse

The total distance for one time delivery from Mixue

warehouse to 20 Mixue branches, then back to Mixue

warehouse is 91240 meter or 91,240 kilometers.

Fig. 19. Optimum Route Visualization. (Source: Primary)

In figure 19, it shows the Hamilton circuit with minimum

weight (in meter) to deliver material to 20 Mixue branches in

Bandung.

B. Algorithm and Method Analysis

The researchers utilized a dynamic programming approach

incorporating the Held-Karp algorithm to address the

Travelling Salesman Problem (TSP). This approach

significantly reduces computational redundancy compared to

brute-force methods, yet it still entails examining all possible

routes to determine the shortest distance. The algorithm

demonstrates considerable time complexity, particularly when

applied to scenarios involving more than 20 nodes, with a

complexity order of O (n^2 * 2^n). The initialization itself is

O(n), then the loop runs for every subset size from 2 to n-1.

The number of the subset is 2𝑛 .Lastly, the algorithm iterates

over n elements to find the minimum cost path. This is

markedly more efficient than the brute-force approach, which

has a complexity order of O(n!). However, the algorithm's

efficiency diminishes for problems with more than 20 nodes,

leading the researchers to limit their analysis to 20 Mixue

branches.

The researchers concluded that employing the TSP approach

was optimal for identifying the shortest route for material

delivery to Mixue branches. The primary focus of the research

was on minimizing the distance covered to visit all locations.

However, they acknowledged that this method has limitations,

as the most optimal route is not solely determined by distance.

Factors such as traffic conditions, time, and road infrastructure

also play significant roles. Despite these considerations, the

researchers maintained that prioritizing shortest distance is the

most effective strategy in optimizing delivery routes.

Applying this methodology, Mixue can potentially lower

delivery costs to its branches, thereby enhancing its

profitability.

V. CONCLUSION

This paper shows that the Traveling Salesman Problem

(TSP) algorithm works well for figuring out the best way to

deliver goods to Mixue shops in Bandung city. This algorithm

helps find the shortest path to visit all the Mixue branches,

which can help the Mixue company save money on deliveries.

Researcher used a special way of solving problems, called

dynamic programming, to make the TSP algorithm work. This

method is good because it looks at every possible route and

picks the shortest one. This makes sure it doesn’t miss any

better routes.

From this research, researcher found the best way to deliver

materials to 20 Mixue branches. The route starts at Mixue

Warehouse → Mixue Kawung → Mixue Padjajaran → Mixue

Paskal Sukajadi → Mixue Cihampelas → Mixue Sumatri →

Mixue Setiabudi → Mixue Ciumbuleuit → Mixue Dipatiukur

→ Mixue Tubagus Ismail → Mixue Dago Pusat → Mixue

Dago Atas → Mixue Cigadung → Mixue Sukamaju → Mixue

Cikutra → Mixue Pahlawan → Mixue Cihapit → Mixue Banda

→ Mixue BEC → Mixue Cibadak → Mixue Warehouse. The

total distance of this route is approximately 91.24 kilometers.

This methodology can be similarly applied to determine the

optimal routes for other Mixue branches. By consistently

applying this approach, the Mixue company can ensure the

efficiency of its delivery operations across various locations,

thereby optimizing operational costs and enhancing overall

logistical efficiency.

VI. APPENDIX

 The completed Traveling Salesman Problem algorithm cab

be found below.

https://github.com/Benardo07/TSP-Mixue-Branches

VII. ACKNOWLEDGMENT

 First and foremost, I extend my deepest gratitude to God,

whose blessings and guidance have been my constant source of

strength and inspiration throughout this research journey.

Then, researcher would like to express his sincere thanks to his

Discrete Mathematics instructor, Dr. Nur Ulfa Maulidevi, S.T.,

M.Sc., lecturer of class 01. Her knowledge and the resources

provided were invaluable in the completion of this paper.

Additionally, my appreciation extends to all the lecturers of

IF2120 who have contributed to my understanding of Discrete

Mathematics, making this research possible.

https://github.com/Benardo07/TSP-Mixue-Branches

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

 The researchers would also thank to Rachel Gabriela Chen,

for helping researcher by giving a guide to using google Maps

API, that is used to collect data for this research.

 Lastly, the researcher would like to thank his parents, all his

friends that always supporting him and gives motivation to

learn and develop together.

REFERENCES

[1] R. Munir, “Graf Bagian 1,” IF2120 Matematika Diskrit. [Online].
Available:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2023-2024/19-

Graf-Bagian1-2023.pdf [Accessed 9 December2023].
[2] R. Munir, “Graf Bagian 2,” IF2120 Matematika Diskrit. [Online].

Available:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2023-2024/20-
Graf-Bagian2-2023.pdf [Accessed 9 December 2023].

[3] R. Munir, “Graf Bagian 3,” IF2120 Matematika Diskrit. [Online].

Available:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2023-2024/21-

Graf-Bagian3-2023.pdf [Accessed 9 December 2023].

[4] S. Chaplick & A. Wolff, “Lecture 1. Introduction & Held-Karp-algorithm

for TSP,” [Online].

Available:

https://wuecampus.uni-wuerzburg.de/moodle/pluginfile.php/1928459/mo
d_resource/content/2/advalg-ws19-vl01-intro%2Btsp.pdf

[5] “Travelling Salesman Problem using Dynamic Programming,”

GeeksforGeeks, 19-Apr-2023. [Online].
Available:

https://www.geeksforgeeks.org/travelling-salesman-problem-using-

dynamic-programming/ [Accessed 10 December 2023].
[6] “Travelling Salesman Problem: Its definition and Implementation,”

Bhumi Varta technology, 25-Jan-2023. [Online].

Available:
https://bvarta.com/travelling-salesman-problem-its-definition-and-

implementation/ [Accessed 9 December 2023].

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 11 Desember 2023

Benardo 13522055

